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Abstract. We present a simple neural network model in which the outputs of groups of 
neurons are chemically modulated. This feature takes into account the existence of 
neuromodulators which are known to have a strong effect on the behaviour of real biological 
networks. The effective (non-symmetric) connection matrix thereby becomes a function 
of the modulator concentrations. By deriving evolution equations for the pattern overlaps 
we show that, during recall, the system can select distinct subclasses from the stored patterns 
by varying these concentrations. Our model may increase our understanding of the function 
of neuromodulators. 

1. Introduction 

Neural network models of the Hopfield type (Hopfield 1982, Amit et al 1985a, b)  
provide a nice framework in which to obtain analytical results. The definition of neural 
networks in terms of Ising spins and pair interactions enables one to make extensive 
use of tools from statistical physics. The storage and retrieval of patterns (under 
various circumstances) is the topic that is studied most. Whereas the first models were 
not completely realistic from a neurological point of view, nowadays it is becoming 
possible to incorporate Nature’s constraints, e.g. Dale’s law (Shinomoto 1987) and 
finite connectivity (Derrida et a1 1987, Canning and Gardner 1988, Coolen et a1 1989) 
and still analyse the model behaviour analytically. 

The purpose of our paper is to define a simple model along these lines which 
incorporates the fact that in biological networks there are a large number of neuro- 
modulators which strongly affect the system’s evolution in time. The role of these 
substances ranges from causing a switch between modes of operation of small pattern 
generators (Mardner 1988) to controlling the ‘motivational’ or ‘emotional’ state of the 
nervous system in a wide variety of animals (Kravitz 1988). The modulators can be 
hormones, neuropeptides or drugs. There is a large body of experimental work on 
neuromodulation effects at the level of single neurons (Kaczmarek and Levitan 1987), 
but we know of no model in which one can explicitly calculate the effect of neuro- 
modulators on collective processes in large, densely interconnected networks. Our 
model illustrates how a considerable increase in flexibility of the network behaviour 
arises from adding a simple cell property which occurs naturally and which can be 
implemented easily in silicon chips. Still, analysis of the network performance only 
requires a moderate extension of existing methods. 
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2. Motivation and biological background 

The theoretical and technological relevance of our model can be understood without 
regard for biological considerations, but it may be interesting to quickly sketch its 
biological motivations. 

Since at least 1849 (Berthold 1849), it has been observed that actually displayed 
behavioural repertoires are strongly dependent on compounds such as hormones, 
neuropeptides and many drugs, which are released slowly and reach large parts (or 
the whole) of the brain. Such neuromodulators affect (Kaczmarek and Levitan 1987) 
the action of the (fast and local) neurotransmitters by interfering with the biochemistry 
of their production, transport, release, etc. They may also affect the effectiveness of 
specific receptors or change thresholds. In our model we only consider modulation 
of the transmission strength. Note that modulation specificity depends on transmit- 
ter/receptor types, used by a cell, not (on our scale of interest) on its position in the 
network. 

At present one of the main areas of experimental neurobiology concerns questions 
of how modulation of cells controls the behavioural repertoire of neural networks. In 
recent experiments (Bicker et al 1989, Kravitz 1988, Mardner 1988) on very small 
networks, it has become possible to study how spontaneous or stimulus-evoked 
behaviours can be activated, suppressed, or switched from one mode to another. Our 
model can be seen as a first attempt to understand these effects. 

3. Definitions 

As usual, we represent the N neurons by Ising spins si ( i  = 1 . . . N ) .  If neuron i fires 
we put si = 1; if it is at rest s, = -1. The network is fully connected. The stochastic 
evolution of the microscopic state s = (sl,. . . , s N )  is governed by the master equation 

Here p , ( s )  is the probability of finding the system at time t in state s, w , ( s )  is the 
probability per unit time that spin i will flip, and F, is an operator: F , @ ( s , ,  . . . , sN) = 
O(s l , .  . . , -s!, . . . , s N ) .  For w,(s) we make the usual choice 

( 2 )  

where p (the inverse ‘temperature’, p = 1/ T )  is a measure of the rate of spontaneous 
spin-flips and h, is the local field, or ‘input’, at site i: 

wt(s) = $[ 1 - tanh(ps,h,)] 

J 

The matrix elements Ji,. represent the strengths of the synaptic connections between 
the neurons; if JI, > 0, neuron j has an excitatory effect on neuron i, if JIJ < 0 the effect 
is inhibitory. All information is stored in the values ofthese connections. The MI E (0 , l )  
reflect the effect of the neuromodulators which can prevent neurons from transmitting 
information. A specific modulation state is represented by the N-bit vector M =  
( M ,  , . .  . , M N ) ,  which we call a ‘mask’. These masks have only a finite number of 
degrees of freedom since there is only a finite number of classes of neurons that can 
respond differently to neuromodulators. We assume that the network has learned a 
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number of patterns g‘,) = (fiFJ,. . . , t g ! ) ,  p = 1 . . . p ,  according to Hebb’s rule (Hebb 
1949). During the learning stage we must again take into account the presence of 
neuromodulators: we will denote by M‘,’)  the mask that was present during the learning 
of pattern p. If we write c = (c , ,  , . . , c,) for the concentrations of the n neuro- 
modulators during recall we can write for the local fields: 

The (non-symmetric) effective connection matrix Tq can be controlled reversibly by 
varying the concentrations c (the changes in c are of course much slower than the 
changes in the microscopic state s. 

4. The macroscopic behaviour 

In order to analyse the behaviour of this system, we consider the usual macroscopic 
description in terms of the state overlaps q , ( s ) :  

Because of the non-symmetry of the effective connection matrix, we cannot compute 
the equilibrium values of the q, by applying equilibrium statistical mechanics; however, 
we can cast the problem in the form studied in Coolen and Ruijgrok (1988), where 
evolution equations were derived for the pattern overlaps which also hold for non- 
symmetric connectivity. We introduce dummy patterns q(”)= ( ~ ( 1 ~ ’ ,  . . . , 7%)) with 
corresponding overlaps k, (s): 

(note that in Coolen and Ruijgrok (1988) the ‘patterns’ need not be real spin configur- 
ations). In the limit N -$ we find deterministic flow equations for the macroscopic 
variables k and q. If the stored patterns are chosen at random these equations are: 

Here ( denotes the average over the distribution from which the patterns were chosen; 
A,(c) is the overlap between the present mask M and the mask during the learning 
of pattern p :  

Finally we define m, = k,/A,, in terms of which the evolution equations are: 
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With (7), (8) the system behaviour can be understood. The evolution is fully determined 
by the rn, (apart from a scaling factor, m, is simply the pattern overlap computed 
over the subset of all neurons for which there is a match between the actual mask M 
and the mask L’W‘~)) .  The overlaps q, are simply being ‘dragged along’. Note that (8) 
is the same equation one would find if one were to compute the evolution in time for 
the overlaps in Viana’s (1988) model, where the connection matrix is: 

Our system will always reach equilibrium, in which case q = m. However, in Viana’s 
model the weights A, (which determine how strongly the patterns are stored) are fixed 
numbers; they are determined solely by the number of times the patterns were presented 
during the learning stage. In our model the weights A,(c) are not fixed, but can be 
varied by changing the concentrations c of the neuromodulators. 

The recall of one of the stored patterns corresponds to the macroscopic state 
q2 = q( T)6,,. The critical temperature T, below which such a state is an equilibrium 
solution of (8) is simply A p .  Given a noise level T, the system can only recall patterns 
for which A,> T. Put differently, only those patterns can be recalled for which the 
mask used during the learning stage bears a sufficient resemblance to the present mask. 
In addition, the ‘suppressed’ state are unstable in a finite range below their critical 
temperature; this further extends the selectivity. A detailed analysis of the equilibrium 
properties of (7), (8) for a given chemical setting is implicitly given in Viana (1988). 

5. Discussion 

Our model illustrates how a simple modulation scheme, based on neuron types with 
different transmitters, leads to selective pattern recall at the network level. During 
pattern recall, by varying the concentrations of the neuromodulators, the system selects 
from the set of all stored patterns those patterns which were learned with a modulation 
state (mask) that resembles the present modulation state. We have concentrated here 
ofi selective recall from a repertoire of static patterns but the analysis can be extended 
to networks with stored sequences of patterns or to layered networks that perform 
transformations. 

Again, as with, e.g., the models by Mezard er a1 (1986) and Nadal et a1 (1986), 
the collective behaviour in a specific neural system is found to be formally equivalent 
to the macroscopic evolution in Viana’s model (1988) for pattern storage with unequal 
weights (if these weights are properly chosen). 

References 

Amit D J, Gutfreund H and Sompolinsky H 1985a Phys. Rev. A 32 1007 
- 1985b Phys. Rev. Left. 55 1530 
Berthold 1849 Arch. Anat. Physioi. Wiss. Med. 16 42 
Bicker G and Menzel R 1989 Nature 337 33 
Canning A and Gardner E 1985 J. Phys. A :  Math. Gen. 21 3275 
Coolen A C C, Denier van der Con J J and Ruijgrok Th W 1989 Artificial Neural Networks (London: IEE) 
Coolen A C C and Ruijgrok Th W 1988 Phys. Rev. A 38 4253 
Derrida B, Gardner E and Zippelius A 1987 Europhys. Left. 4 167 



Selective pattern recall in neural networks 579 

Hebb D 0 1949 711e Organization ofBehauiour (New York: Wiley) 
Hopfield J J 1982 h o c .  Natl Acad. Sci., U S A  79 2554 
Kaczmarek L K and Levitan I B 1987 Neuromodulation. n e  Biochemical Control of Neuronal Excitability 

Kravitz E A 1988 Science 241 1775 
Mardner E 1988 Nature 335 296 
Mezard M, Nadal J P and Toulouse G 1986 J .  Physique. 47 1457 
Nadal J P, Toulouse G, Changeux J P and Dehaene S 1986 Europhys. Lefr. 1 535 
Shinomoto S 1987 Biol. Cybern. 57 197 
Viana L 1988 J.  Physique 49 167 

(Oxford: Oxford University Press) 


